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Figure 8. X-ray diffraction pattern of the white powder scraped from the surface of a used catalyst pellet from the Tl (IV) cresylate Run.
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Dynamic Simulation of Azeotropic

Distillation Towers

Algorithms are presented for integration of the stiff ordinary differential
equations using an adaptive semi-implicit Runge-Kutta (ASIRK) integrator; an
A-stable, single-step, noniterative algorithm with step-size control. Unusual open
loop responses are encountered for simulations of azeotropic distillation towers
and the results suggest two control variables. The results support the contention

that one steady-state regime of operation is unstable.

G. J. PROKOPAKIS and
W. D. SEIDER

Department of Chemical Engineering
University of Pennsylvania
Philadelphia, PA 19104

SCOPE

In 1978, we undertook to study the steady-state characteristics
of azeotropic distillation towers (Prokopakis et al., 1981a). Our
results demonstrated the extreme sensitivity of the steep con-

G. J. Prokopakis is presently at Columbia University.
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centration and temperature fronts to small changes in the boil-
up rate, product recovery and purity, and the reflux ratio, and
led to an algorithm to locate feasible specifications for the
configuration in Figure 6a (Prokopakis and Seider, 1983). Fur-
thermore, they showed three regimes of operation, which were
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simultaneously reported by Magnussen et al. (1979), who found
an instance of instability for one of the regimes. These obser-
vations suggested the dynamic simulation studies reported
herein, which reveal unusual responses to disturbances and
support the observations of Magnussen and coworkers.

Many models for dynamic simulation of distillation towers
have been reported, but these usually incorporate assumptions
to simplify control algorithms. The typical assumptions of
constant molal overflow and uniform relative volatilities
throughout sections of the tower are not appropriate for the
nonideal solutions in azeotropic towers. In these cases, it is
necessary to include the MESH (Material balance, Equilibrium,
Summation of mole fractions, Heat balance) equations for each
tray. These comprise a large set of stiff ordinary differential

equations (ODE’s) that are integrated with semi-implicit or-

implicit integration formulas to prevent numerical insta-
bility.

To our knowledge, Ballard and Brosilow (1978) reported the
first A-stable algorithm to integrate the stiff MESH ODE’s with
the step-size adjusted to give desired accuracy. They used a
second-order, semi-implicit Runge-Kutta method, and observed
that much of the Jacobian matrix is computed during function
evaluation (with no extra computations). Subsequently, Boston
and coworkers (1981), Gallun and Holland (1980), and Sourisseau
and Doherty (1980) developed other algorithms using the GEAR
multistep integration method (Hindmarsh, 1974).

Ballard and Brosilow’s observation that a good approximation
to the Jacobian matrix is computed at no extra cost during
function evaluation, led us to experiment with an adaptive
method which we developed to improve upon the family of
semi-implicit Runge-Kutta methods first introduced by Rosen-
brock (1963). We obtained larger step sizes, approximately the
same number of function evaluations and more Jacobian eval-
uations per step than with the GEAR method for systems of two
and three ODE’s (Prokopakis and Seider, 1981b); an observation
confirmed by Bui (1981) with similar semi-implicit Runge-Kutta
methods. Hence, since the MESH equations have the special
property that the Jacobian matrix is computed during function
evaluation, our algorithm should be more efficient. However,
this was not tested due to the convincing evidence of Bui, the
unavailability of a program to integrate the MESH equations
using the GEAR method, and the extensive effort to program
and test such a method.

In this paper, we briefly review the model for an azeotropic
distillation column, with emphasis on the stiffness of its ODE’s,
and algorithms for integration of the MESH equations which
incorporate generalized integrators such as the GEAR method.
Then, we introduce a new integration algorithm using our
ASIRK integrator, introduce a model for the dynamics of the
decanter, and present unexpected open-loop responses to dis-
turbances for a model of the configuration in Figure 6¢c.

CONCLUSIONS AND SIGNIFICANCE

1. The new algorithms for integration of the MESH equations
using the ASIRK integrator appear to be efficient and reliable
for simulation of azeotropic distillation configurations. The
algorithms are A-stable, single- step, noniterative, and do not
require additional computations for the Jacobian submatrices,
Furthermore, the equations are decoupled for integration and,
for species with relatively small rates of change, re-evaluation
of {I — ahJ]~! can be avoided and, in some cases, integration
is unnecessary across a time step.

2. Open-loop responses for dehydration of ethanol with
benzene are unusual. The steep concentration and temperature
fronts are observed to shift up and down the tower as expected,
However, they initially move in the opposite direction due to
“wash-out,” an unexpected.effect that increases with the hold-
up. The term wash-out is justified to explain this inverse re-
sponse and a similar response is noted in the simulations of

Peiser and Grover (1962). These theoretical results indicate the
need for experimental verification.

3. A combination of disturbances can diminish the movement
of the steep fronts, suggesting that azeotropic distillation towers
can be controlled by adjusting the decanter bypass fraction and
the reboiler heat duty.

4. A large increase in the feed flow rate shifts operation from
a regime with alcohol and entrainer throughout the stripping
section to one with appreciable water and negligible entrainer
in the stripping section. In the transient, the profiles pass
through an intermediate regime similar to that computed by
solution of the MESH equations in the steady state. The regime
has appreciable water throughout and entrainer on the upper
trays of the stripping section and appears to be unstable. Hence,
the observations of Magnussen and coworkers (1979) are sup-
ported.

PRIOR WORK: DYNAMIC SIMULATION OF DISTILLATION
TOWERS

There is an extensive literature on distillation dynamics, with
emphasis on process control, tray hydraulics, and uncommon op-
erating strategies, such as cyclic distillation. To our knowledge, the
first simulation studies were reported for binary systems by
Huckaba and coworkers (1963, 1965) and Luyben and coworkers
(1964). Both obtained good agreement between simulation results
and experimental measurements.

The earliest work on simulation of multicomponent distillation
towers was limited by fixed-step integration algorithms that utilize
unnecessarily small time steps throughout much of the range of
integration or inefficient integration methods (Mah and coworkers,
1962; Waggoner and Holland, 1965; Distefano, 1968a,b; Howard,
1970). However, these authors formulated the mathematical
models that are largely in use today. The usual nomenclature is
shown in Figure 1, a schematic of a distillation tower, where the
general Tray 1 has a feed stream, vapor and liquid sidestreams, and
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heat transfer. Note that s is the fraction of vapor in the sidestream
leaving Tray i and s¥ corresponds for the liquid sidestream.

The models of Distefano (1968a), Howard (1970), Ballard and
Brosilow (1978), and Boston and coworkers (1981) include the
energy balance and share the following assumptions:

(1) The vapor and liquid streams leave the trays at equilib-
rium.

(2) The liquid on each tray is perfectly mixed.

(3) The vapor hold-up on the trays is negligible.

(4) The transportation delay of liquid and vapor between trays
is negligible.

(5) The temperature on each tray is uniform.

These lead to the following equations, beginning with the ma-
terial balances for species j on Tray i
dit(Mixij) = =sf DLivixier; + = s2)Visgimy
+ Fiziy — Lixi; — Viyy ! _ i ’Z:,
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Figure 1. Schematic of a continuous distiliation tower.

The overall mass balance on Tray i is:
dM
“Jt_t =(1 =i )Lip1 + (1~ si)Viy

+F1—L1_Vi i=1,...,N (2)

The equations that relate the compositions of vapor and liquid
phases at equilibrium are:
=1,...,N

=1,...,C ®)

Yy = Kz, ys, Ti, Pilxy
The energy balance on Tray i is:
d
“E (Mthﬂx TP

= (1~ s{y )Ligthiyfxie 1,Tig 1P o}
+ (1 = s )Vim ik dgi-1.Ti-1,P1—1}
+ Fih{la, T PT} + Q¢ — Lih iz, Ti.Py}
- Vihf{y,,Tt,Pii i=1,...,N (4)

The liquid hold-up on Tray i is:

AIChE Journal (Vol. 29, No. 6)

M{ = p{‘{x ,T{,Pi}A{(Hw, + Aw;) i= 17 e ’N (5)

where A, is cross-sectional area of Tray i, Hy, is the weir height,
and A,, is the crest height of the liquid over the weir. Ballard and
Brosilow (1978) use a form of the Francis weir formula to represent
the tray hydraulics:

[ L SR N (8
l\/E pHa, Ti.PidLy, Y ©
where L, is the weir length and g the acceleration due to gravity.
However, Distefano (1968a), Howard (1970), and Boston and co-
workers (1981) assume that A, is independent of L;, p&, and L,;
that is, a constant volume of hold-up exists on each tray.

In addition, the mole fractions for the vapor and liquid phases
on Tray i sum to unity:

c C ,
Yxi=%y;=1 i=1,...,N (7)
i=1 i=1

There are N(C + 2) ODEs (Eqs. 1, 2 and 4), and N(C + 4) al-
gebraic equations (Egs. 3, 5-7); hence, N(C + 5) independent
equations, since the overall mass balances depend on the remaining
equations. There are N(3C + 15) variables and N(C + 10) speci-
fications, with an appropriate set: F;,z;, T PP, s%,A;,Hyy, Loy,
i=1...,Nandj=1,....CplusQ;,i=2,... N—Lsti=
1,...,N — 1, and three of the variables, reflux ratio (R}, boil-up
ratio (R’ = V/L;), bottoms flow rate (L), boil-up rate (Vy), re-
boiler heat duty (Q)), or condenser heat duty (Qy). Alternatively,
tray pressures, P;, can be computed as a function of the liquid head
on the trays. Note that when constant volume hold-up is assumed,
Eq. 6 and the variables L,,, do not apply; A, is specified in place
of L,

Auz‘ = 1.41

Stift ODE’s

The Jacobian matrix of the MESH ODE'’s typically has small
negative eigenvalues. Hence, in the rapid transient, immediately
following a disturbance, the step size of an explicit integrator is not
severely limited by a stability bound. However, as the rates of
change decrease, the step size to achieve desired accuracy increases
and the limitation gains significance; that is, the system stiffens and
a stiff integrator (implicit or semi-implicit integrator without a
stability bound) becomes more efficient. This variation in stiffness
is examined for several physical systems by Seider and coworkers
(1982). :

Many authors use the stiffness ratio, SR = |Re{A}| max/
[Re{A}| mins as a2 measure of stiffness. It successfully accounts for
the spread in response times, but does not measure stiffness during
the rapid transient where only |Re{\}| nax indicates whether an
integrator with a stability bound must restrict its step size below
that to give desired accuracy. Distefano (1968b) used SR and re-
lated it to the process variables. Although we prefer other measures
of stiffness (Seider and coworkers, 1982), some of his development
is useful. First, he combines Egs. 1-13 to give:

dx .
oG+ dy i=1,....C (8)
whereG;,j =1,...,C, are tridiagonal matrices that approximate

the Jacobian matrix, J;, for species j. He shows that the eigenvalues
of G;,j=1,...,C, are bounded as follows:

L + KV L + KV

—_— << < —_—

( M )mx = Mmax < 2( M )max
where

(L + KV} _ X (L, + va,)
M max 1,1 M,

and, similarly,

L + KV L + KV

LA < ) [ EALS

( M )min_ Ik|mm— 2( M )min
where
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(L + KV) - min (L, + va,)
M min 1,4

Hence, the eigenvalues of the system depend on the hold-ups, the
range of K-values, and the circulation rates. Tyreus and coworkers
(1975) observe that as purities approach unity with more trays, the
mole fractions respond more slowly and |A|min decreases more
rapidly than |A|max After rapid transients, these systems are stiffer
because the step-size to give desired accuracy increases more
rapidly than that to give numerical stability with an explicit inte-
grator. Similarly, for difficult separations (with large pinch zones),
the MESH equations become stiffer as the response time in-
creases.

i

PRIOR WORK: ALGORITHMS FOR INTEGRATION OF THE
MESH EQUATIONS

Ballard and Brosilow Algorithm

To our knowledge, the first distillation algorithm to use a semi-
implicit or implicit method with step-size control was developed
by Ballard and Brosilow (1978), who derived three working
equations.

First, they combine Eqns. 1, 2 and 3 to give Eq. 8. Then, the
overall mass balance (Eq. 2), Eq. 8, and the Francis weir formula
(Eq. 6) are used to give:

V- du )

where M, is the diagonal matrix of the derivatives of the holdup
with respect to the liquid flow rate and D and E are bidiagonal
matrices. It is assumed that the liquid density is a molal average
of the densities of the pure species. The third equation is derived
using the energy balance (Eg. 4) and the equilibrium equations
(Egs. 3) to give:

BL+CV=d (10

where B and C are bidiagonal matrices. Ballard and Brosilow as-
sume that the liquid enthalpy is a molal average of the enthalpies
of the pure species. However, when the heat of mixing is signifi-
cant, B, C, and dg can be replaced by B*, C*, and df, derived
using analytical derivatives for dlnvy;/oT. Combmmg Egs. 9 and
10

i M;Y(D-EC'B)L + M{'(EC 'dr — dv) (1))

There are C + 1 systems of N ODE'’s to be integrated for x;, j
=1,...,C, and L. With new values of x; and L (during or after
each time step), T; and y; are computed by solution of the bubble
point equation on each tray:

C
ZlKij{KhXi»ThPi}xij =1 (12)
i=

This algorithm is summarized in Figure 2. It solves Eqgs. 1-7 ac-
curately, except when molal average densities do not apply.

Given X, yn, Tn, Lu, Vs
1. Calculate x,,+1 L, 11 by integration of:

dx
_:l=gj§].+ d.,

i=1,...,C
dt J

L - (D ECBL + MPEC s — d)
2. Solve for V, 4
Yoir1=CVde — BLy 4]
3. Solve bubble point equation for
Tinel, Yine1l i=1,... N

L4 Letn<n+ 1
Figure 2. Ballard and Brosilow algorithm.
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Given xu, ¥s, In, Ln, ¥
= 1. Calculate x, 1 by integration of:

dx;
Tjt—=§j£j+dx, i=1L....C
2. Solve bubble point eqn. for
Tin+1. Yin+1l i=1,...,N
3. Solve Egs. 14 and 15
Estimate hL/At and AM;/ At at £,,, i=1,... N
Calculate L,,Jr b Vo
4. Compute p‘,,.ﬂ i=1,...,
Mi = Pf:m. IAI[HM)( + Aw4,n+1]
1.41 (————L""“ )2/3
L \/-g_ Pﬁn+1Lw¢
5 letn<n+1

Figure 3. Distefano algorithm.

Distefano Algorithm

Distefano (1968a) accompanied Eq. 8 with two other working
equations. He combined the energy balance (Eq. 4) with the overall
mass balance to give (ignoring side streams):

dh 1
t‘ =f£' = I_VI—; [Li+1(h{“+1 - h{‘)

~ Vi(h} = hY) + V(R — kE)
+ FhF-hrhy+ Q] i=1,....N (13)

The third set of ODE’s are the overall mass balances:

dM
=M=l 1+ Vi +F-L -V

i=1,...,.N (@
Values of xn41, hL_ ,, and M, ;1 could be computed by numerical
integration. However, h%, | and M, are not independent of
Xq 41 Given xp. 1, T,,+ 1 can be computed by solution of Eq. 12,
followed by h%, ,, p5, ), and M, (assuming constant volume
hold-up).

Distefano uses Eqgs. 13 and 2, with approximations for the de-
rivatives, dhl/dt and dM,/dt, to give V,,, ; and Ly +,. Since these
derivatives are not normally large, he recommends low-order fi-
nite-difference approximations:

ARt 1

A Mi — [Liy1(hE = hE) = Vi(hY - hh
+ Viea(hioy = i) + Fihf = hi) + Q] (14)
and
AM,
At L1+1+V, 1+F“L V (15)

but does not indicate his choice of approximations. His algorithm
for integration of Eq. 8 and solution of Egs. 12, 14 and 15 is sum-
marized in Figure 3.

It is noteworthy that the GEAR integrator (Hindmarsh, 1974)
can be used to approximate dh’/dt and dM;/dt. To show this, we
must first review the GEAR integrator.

GEAR Integrator

GEAR is a multistep algorithm for the integration of m stiff

ODE'’s

= fly.t} (16)
that uses backward difference formulas:
r—1
Yny1 = ZZO A yp-1 + hﬂ—lﬂtn+1,xn+1} (17)

where 7 is the order of accuracy of the formulas. The values of y
at previous steps are computed using the Nordsieck array
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1. Guessx, y, L,V, T
— 2. Compute u, A, Bf, enthalpy parameters using accurate models
for K and h
+3. Solve Eq. 1 in steady state with y; = Kyxy; substituted for

Xj, j =1,..., C

. Calculate y
. Calculate T
. Solve Eqs. 14 and 15 in steady state for

LYy

S Uk

7. Convergence criteria satisfied?
No.
8. Convergence criteria satisfied?
No.
t uy; are volatility parameters, typically defined as
Ky
K

Uy =

where
= B
In Ki=A; — =
T;
(a) Approximation to the Boston and Sullivan algorithm for solution of
MESH equations in the steady-state

Given xg, Yn, In, Ln, ¥, (from GEAR)
1. Gues?gnll,xH L Lt Lov1, Yot
—e2. Compute u, 4, BY, enthalpy parameters using accurate K and h
. Solve Eq. 20 for x; 2 from GEAR
. Calculate y
. Calculate T
. Solve Eqs. 21 and 22 for L, V; Zs from GEAR.
Compute p&', M
7. Convergence criteria satisfied?
No.
8. Convergence criteria satisfied?
No.

S UL 02

(b) Modified Boston and Sultivan algorithm.

Figure 4. Boston and coworkers algorithm using GEAR

h% | hae

?_y,,, ey, -q—' Xﬁ,q) (18)
which has ¢ columns, where r < q. The GEAR program updates
the Nordsieck array during each time step, rather than store pre-
vious values of y and carry-out interpolation when the step-size
changes. “Near A-stability” or “stiff stability” is achieved by ad-
justing r and h simultaneously in an algorithm described by
Hindmarsh (1974), where 1 < r < 6. During each time step, the
Newton-Raphson method is used to solve Eq. 17 for y, 4 . Nor-
mally only one iteration is necessary and the Jacobian matrix is
evaluated once every few time steps. A disadvantage of the GEAR
algorithm is that the Nordsieck array requires storage for g = 6
vgftors having m elements, where m is the number of state vari-
ables.

Zn = |Yn,hYn,

Algorithm of Boston and Coworkers

The GEAR algorithm can be used for integration of Eq. 8 with
Eq. 11 or Egs. 18 and 2. But, since Eq. 17 must be solved for the
state variables with the algebraic MESH equations, Boston and
coworkers (1981) prefer to use their efficient RADFRAC program
with modifications. RADFRAC solves the MESH equations in the
steady-state using the Boston and Sullivan algorithm (1974).

Rather than present the details of this complex algorithm, Figure
4a gives an approximation that we have found works well. The
K-values and enthalpies are evaluated accurately in the outer loop
only. The MESH equations are solved in the inner loop using ap-
proximate models for K-values and enthalpies and holding u,A,B
{defined in Figure 4a) and enthalpy parameters constant. In our
experience, the computation time to solve the MESH equations in
the inner loop is equivalent to that for one iteration of the outer
loop.

Step 3 solves the material balances for species j in the steady-state
(Eq. 1) with y;; = K;jx;; substituted:

ftj =1 —sh OLip iy — (L + ViKyxy
A + (1= s )V Ky 11y + Fizy = 0,
=Gz + 4 (19)

For dynamic simulation, however, Eq. 8

d
W gy d, 1=1,..C ®)

must be integrated from t, to ¢, ;1. Note that G; and Q are tri-
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diagonal matrices with similar elements; G; are a function of
M

Boston and coworkers (1981) use the GEAR algorithm to inte-
grate Eq. 8 from 2, to ¢, 1. The resulting nonlinear algebraic
equations:

r—1

Xin+l1 ™ {Z:l O Xjn—t+1 + kﬁ—lf; {LI;';H» Lins+1] (20)

differ slightly from Eq. 19. Hence, the Boston and Sullivan algo-
rithm is modified to solve Eq. 20 rather than Eq. 19 in Step 3. The
GEAR subroutine STIFF is also modified to transfer the summation
term in Eq. 20

-1

T
> O Xjn-l+1
<1

and the step size, A, to the modified Boston and Sullivan algorithm,
which solves the MESH equations for x;n4 1 (and yjn4 1 Tnty,
Vpi1and L, 1) and returns to the GEAR integrator, as illustrated
in Figure 4b. Note that the GEAR integrator also integrates Egs.
13 and 2 and the resulting equations:

r—1
h{l:n+l = 121 alhf:n—l+l + hﬂ—lfﬂh{:n+l,tn+ 1} (21)
r—1
Minsyr= IZ:I oMy 41 + hﬁ—LﬁulMt,n+l:tn+ 1} (22)

differ from those in the steady state:
Fr=Liyihl + Vighi,
—LhE—VAh? + Fhf + O, =0 (23)
=L+ Vit + F—Li—=V;=0 (24)

where f# = (J% — h,f#)/M; and f¥ = fM. Hence, the Boston and
Sullivan algorithm is modified to solve Egs. 21 and 22 for ¥V and
L in Step 6, rather than Eqgs. 23 and 24. The GEAR subroutine
STIFF transfers the summations and h’, , ; and M; ., | are com-
puted using x; 1 and Ty 4 1.

Other Algorithms

Gallun and Holland (1980) and Sourisseau and Doherty (1980)
also use the GEAR integrator. Both solve the MESH equations with
the pressure head computed for each tray, although Sourisseau and
Doherty consider binary systems only. Gallun and Holland indicate
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that the GEAR integrator must be modified to solve the difference
equations and the other nonlinear algebraic equations. However,
neither paper presents an algorithm to accomplish this.

ASIRK Integrator

As mentioned previously, our adaptive semi-implicit Runge-
Kutta (ASIRK) integrator (Prokopakis and Seider, 1981b) has been
observed to take larger time steps than the GEAR integrator to
achieve comparable accuracy. Normally, a penalty is paid for
additional Jacobian evaluations, but ASIRK was developed given
the Ballard and Brosilow observation that the elements of the Ja-
cobian for the MESH equations are computed during evaluation
of the functions, £;,j =1,...,C, since

i2& j=1...C (25)

This is a fine approximation because the elements of G; do not vary
appreciably with x; across a time step; in support of this, Kim and
Friedly (1974) demonstrate that the response times for x are sig-
nificantly greater than for L. Furthermore, the approximation is
reasonable for highly nonideal solutions. Before describing the
algorithm for integration of the MESH equations, we briefly review
the features of the ASIRK integrator.
The integration formula is:

Ya+1=Yn + wik) + woks (26)

where
(L —haJ{yallky = hflya} (27)
(L—haJlys}lke = h Ry, + bk} (28)

Although the method is derived to give second-order accuracy, the
coefficients w1, ws, @, and b are adjusted to give an exact solution
to:

e _s Ys (29)

over the last time step, where y is the variable having the largest
fractional rate of change; that is, the pseudo-eigenvalue, X, is es-
timated using values of y, over the last time step. The step size, h,
is projected using values of y, over two previous time steps and the
product hX; is used to adjust .. (characteristic root of Egs. 26-28

Given xa, yn, Iy, Ln, Vs
1. Estimate AhY/At and AM,/At att,, i=1,... N
2. Calculate ki

[I—haGilxjnllki; = hlGilxynlxin + dx)]

3. At x4 + bk ;, compute

T, y using Eq. 31
L, Vusing Egs. 14 and 15
et M

4. Calculate ko
(I—haGilxpnllke; = hlGitsjm + bkij}(xn + bkyj) + di)]

5. Compute
Xin+l= Xjn + wiki; + wokoy
6. Att,, ), compute

I.. L Yn+1 using Eq. 31
L£+ 1, ¥Vn+1 using Egs. 14 and 15

L 2ﬂ-+—1vM_n+l
7 Letn<—n+1

(a) Distefano algorithm

i=1,....C

j=1,....C

ji=1....C

as h|A| = ) and, in turn, w), wg, a and b for integration over the
next step. This algorithm gives much better than second-order
accuracy in tracking the variable having the largest fractional rate
of change, as well as the remaining variables. Unfortunately, the
methods of estimating A, projecting h, and adjusting .. cannot
be summarized in a few sentences. The reader should refer to our
paper (Prokopakis and Seider, 1981b) for the details.

Since ASIRK is a single-step method, it requires less storage (y,
and y; »—1) than the GEAR method (Nordsieck array, six columns).
Also, ASIRK is A-stable, whereas the family of backward difference
formulas in the GEAR method are just stiffly stable.

ASIRK METHOD FOR INTEGRATION OF THE MESH ODE’S

When integrating with the ASIRK method, the system is de-
coupled; that is, each of C sets of N ODE's is integrated indepen-
dently:

Xjnt1= X0 + wikyj + wokoj j=1...,C
ki; =1~ ah G R % 0) (30)
koj={1- ah__@j]_lhfj{éj,n + bl_(l,jf

Note that J; has been replaced by G;, the elements of which are
computed when evaluating f; (Eq. 8). We integrate Eq. 8 with
finite-difference approximations for dhF/dt and dM,/dt in Egs.
13 and 2, as recommended by Distefano. We use second-order
backward differences, which require storage of A and M over
the two previous time steps. The algorithm is shown in Figure
5a.

To estimate AhY/ At and AM;/ At initially, we assume the tower
operates at steady-state prior to a disturbance. If the flow rate of
a feed stream changes by AF,at t =0,

AM,
( At )t=0 = AFy

and

Ahf 1 F_pL[AM:
( At )e=o M [(AF')hi hi At Ji=0

For the second and subsequent steps first-order backward differ-

Given Xn, Yn, I..L,, Vo
=1. Calculate k;;

[I-haGilxjnllkr; = hGylxsnlxn + ds;,)
(L~ haJiiLallkie = h{JeiLniLy + dia)
2. At x;, + bky;and L, + bk, 1., compute

ji=1....C

T, y using Eq. 81
V= C'de — BLn + bkio)]

3. Calculate ks

(L~ ha Gt xynllkas = hIGlxyn + bk j)(3in + bkry) + dy)

(L= haJi{Lo}lkor = hlJiiLa + bki o} (Lo + bhkit) + di)

4. Compute ) f=t..
Xin+1 = Xjn + wikiy + ko i=1....C

Loi1=Ln + wikip + wakey

5. Att, 41, compute

T, 1, Yns1 using Eq. 31
Yui1= CYde — B(Lay1)]

L6 Letn<—n+1

(b) Ballard and Brosilow algorithm.

Figure 5. Distillation algorithms using ASIRK

Page 1022 November, 1983

AIChE Journal (Vol. 29, No. 6)



ences are used with hF and M; values at the beginning and end of
the last time step. Other disturbances are treated similarly.

To locate the bubble point temperature, T;, and y;, we rewrite
Eqg. 12, as recommended by Prausnitz and coworkers (1980):

/T = [il Kifxij] =0 31)

because the K-values, K;;, vary with exp{l/T;}, and, hence, f is
nearly a linear function of 1/T;. We have found that the New-
ton-Raphson method works well to solve Eq. 31, requiring no more
than two iterations after the initial profile is computed for the
azeotropic distillation towers in this paper (relative error tolerance
= 0.001).

Ballard and Brosilow add N ODE’s in Eq. 11 and show that

M; (D - EC'B) ~ M;'D,
except for unusually large time steps, and recommend taking
Jo~M'D (32)

to avoid numerical differentiation. This set of N ODE’s is also in-
tegrated independently with the ASTRK method and a revised al-
gorithm is given in Figure 5b.

Multicomponent Systems

Often the mole fractions for one or more of the species do not
change appreciably and it is possible to avoid re-evaluation of [I
— ah J;]7! or even integration for a subset of the ODE’s. We have
found the pseudo-eigenvalue, X,;, is a good measure of the rate of
change and use it to indicate when these steps are unnecessary.

For each set of N ODEs, prior to each integration time step, we
estimate the pseudo-eigenvalue A;;,j =1,. .. ,Cand Ay, (L =C
+ 1), and take the largest, A; may, as the pseudo-eigenvalue for the
entire system. Then, each set of ODE’s is classified in one of three
categories:

(1) Negligible rate of change when

X/ Nomax] <k j=1,....,C+1 (33)

where & = 1074 has produced good results in our studies. Equations
in this category are not integrated.
(2) Moderate rate of change when

& < | Nsj/ Nsmax| < 8

where f/ = 0.5 has also produced good results. Equations in this cat-
egory are integrated, but without recomputing (I — ah J;]~!
(3) Rapid rate of change when

6 < ,}\sj/xs maxl

Equations in this category are integrated with new [ — ah J;]™1
Usnally these have flow rates as output variables. Clearly the values
for k and 0 are arbitrary and may need to be adjusted to improve
performance for a particular system.

Next we consider the mechanics of integration for sets of ODE’s
classified as having rapid or moderate rates of change. We let y;
be the variable with the largest fractional rate of change during
the last time-step, corresponding to A max. Following the ASIRK
algorithm, h,, , | is estimated using ys », Ys n—1, and Y5 n—2. Then
Y« is computed for h,, ; 1 A; max and the parameters a, b, w1, and
wg are computed, prior to integrating the set of N ODE’s with g
as an output variable. For other sets of ODE’s having rapid rate of
change, we recompute [I — ah J;17}

For sets with moderate rate o_f]change to avoid recomputing (1

i=1,...C+1 (34)

j=1,...,C+1 (35)

—ahJ;}7}, we assume that J; does not change between iterations
and set -
anhn
Any1 = h (36)
n+1

Then 7., is computed and the remaining parameters, b, w), wa,
are computed. Here 7 .. is not adjusted to give high accuracy, but
the rate of change is moderate and the step size is less than necessary
for these sets of ODEs. After five time steps, we check whether
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I Jin+1—Jinll <01
If not, [L— ah J;]™! is recomputed.

AZEOTROPIC DISTILLATION

In previous work (Prokopakis and Seider, 1983), we used a
nonlinear programming algorithm to obtain feasible operating
conditions for the azeotropic distillation configuration in Figure
6a to dehydrate alcohol. The boil-up rate, fractional recovery of
product, and bottoms purities of entrainer and by-product are
adjusted to locate an overhead vapor stream that condenses into
two liquid phases, but is in equilibrium with a single liquid phase
on the top tray. Our results show the extreme sensitivity of the
overhead vapor composition and the steep concentration and
temperature fronts to small changes in these variables. Further-
more, they show three regimes of operation, which were simulta-
neously reported by Magnussen and coworkers (1979), who found
an instance of instability for one of the regimes. These observations
suggested that dynamic simulation studies might uncover unusual

N M =
L L T
Concentrated Nt .

L

aleohol L X Decanter : Stripping
Near azeotrope P Entrainer X Tower
Azeotrapic Makg-up
Tower Fn

Nearly
pure |
water

_b“ -

1

Nearly pure
(,? alconol {a)

N TIL
ix
z
n
3

Ly

X, {c)

Figure 6. Configurations for dehydration of alcohal.
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responses to disturbances as well as support the observations of
Magnussen and coworkers.

Our steady-state results show that the aqueous phase leaving the
decanter is small compared with the entrainer phase, and with
water removed in the stripping tower, the flow rate of the vapor
overhead stream, V¥, is small compared to V(1 — r). Hence, to
study dynamic responses, it should be possible to exclude the
stripping tower, as illustrated in Figure 6b, without incurring sig-
nificant errors. Figure 6¢ gives a similar configuration, commonly
found in industry, and it can be shown that r = ¢/ for given V;, L,
x1, T4, and F,,. The latter configuration was simulated in these
studies and, hence, our nonlinear programming problem (Proko-
pakis and Seider, 1983) was modified to locate steady-state con-
ditions. The modifications are summarized in Appendix A.

The model for dynamic simulation of the azeotropic tower has
been presented, as well as algorithms to integrate the MESH ODE's.
In this work, the reboiler, Tray 1, is assigned a large holdup at
constant volume.

Decanter

The dynamics of the decanter are modeled separately with the
following assumptions:

(1) The holdup is large and constant in volume.

(2) The temperature is constant (which requires the heat duty
of the condenser to vary).

(8) The two liquid phases leave the decanter at equilibrium.

{4) The two liquid phases are perfectly mixed.

These lead to the following equations, beginning with the ma-
terial balances for species j
% (Mdxd) = Vyyn; — L¢x; = L%} j=1,...,C (37)

where
M% = Gép{x?, T (88)
and G4 is the volume of hold-up in the decanter. The overall mass
balance is:
dMd
dt
and the equations that relate the composition in the two liquid
phases at equilibrium are:
2 =KHxzexaTdx j=1,....C (40)

The derivative of Eq. 37 is expanded and Eqn. 39 substituted.
Since

=Vy—L¢~L% (39)

2L + L%) = xiL¢ + L7,

we have:
ded v :
== vy~ (41)

During each time step, Eq. 41 is integrated to give x2_ , given Vy
and yy from integration of the MESH ODE’s for the azeotropic
tower. Then, the feed to the decanter is split into two liquid phases,
giving x¢, x* and 8§ = L¢/(L¢ + L¢). Assumption (1) gives:
Vy _ LY+ L%

plyn, T4 plxd, T
and with 8 computed, L¢ and L’ are computed. Furthermore,
by assumption (3),

B =

Le _ Me
Le + Le Me + Me

RESULTS

Two systems were used to study the open loop response of
azeotropic distillation towers: (1) dehydration of ethanol with
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benzene, and (2) dehydration of isopropanol with cyclohexane. The
equations for estimating the thermophysical properties and the
sources of parameters are summarized in Appendix B.

Ethanol Dehydration with Benzene

Calculations were performed for a 27-tray tower (including the
reboiler) to dehydrate a stream containing 89 mol/min of ethanol
and 11 mol/min of water. This saturated liquid feed is introduced
on Tray 23. The pressure increases from 1.013 bar at the top to
1.216 bar in the reboiler, with uniform pressure increase from tray
to tray.

Feasible specifications were obtained using our nonlinear pro-

" gramming algorithm (Prokopakis and Seider, 1983), as modified

for the configuration in Figure 6¢. (See Appendix A.) We solved
P1 with V{ = 250 mol/min, RS, = 0.9, R}, = 1.0, x{op = 17,0 =
5X 1074 and Tn, 1 = 298 K, and obtained V, = 439.5 mol/min,
Rale = 0.905, X1 ent = 2.433 X 1074, %1 war = 2.910 X 1074, and

Q1 = 1.787 X 107 | /min
VN =487.1 mol/min, yxn =[0.2578 0.5529 0.1893]T
Ly+1=467.7mol/min, xy,1=[0.2504 0.5759 0.1737]T
F, = 1.965 mol/min
r=08347, R=3505

The profiles of liquid mole fractions are shown in Figure 7a at t
=0.

The dynamic simulation studies tracked disturbances about this
steady state for a tower with A; = 0.23 m2, to give a linear vapor
velocity of approximately 1 m/s, and H,, = 0.0254 m. The crest
height, 4,,,, was assumed equal to 0.2 H,,,. The reboiler and de-
canter holdups were 1 m®,

Typically, the feed flow rate is disturbed, causing a shift in the
concentration and temperature profiles, which can be countered
by adjusting the decanter bypass fraction, 7, the reboiler heat duty,
Q\, the condenser heat duty, Q¢, or the entrainer make-up flow

1. t=0
2. t=4.9 min
3. 12208 min

Benzena

Liquid male teactions, x;;

Ethanal
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22 wates
~—

x 2 i
20 % 27
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(a) Profiles of liquid mole fractions at several times
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(b) Alcohol mole fractions on several trays.

Figure 7. Responses after a 30 percent increase in the feed flowrate
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Figure 8. Effect of holdup. Ethanol mole fraction on Tray 7 after a 30 percent
increase in the feed flowrate.

rate, F,,, or some combination of these. However, in our simula-
tions, T4 is fixed at 298 K because activity coefficients cannot be
computed accurately at other temperatures; hence, Q¢ is not a
control variable. Furthermore, the entrainer make-up stream is
too small for control action. Hence, our studies were restricted to
the open-loop responses for disturbances in the feed flow rate, r,
and Q 1

First, we increased the feed flow rate by 30% and observed the
movement of concentration fronts in Figure 7a. After a small shift
downward, the fronts shift upward. This upward shift is anticipated
as the additional feed increases the water/entrainer ratio entering
the tower, displacing the entrainer upward. This effect is further
illustrated in Figure 7b, where the mole fraction of alcohol is
tracked on several trays. Initially, the front passes through Trays
4-10. After a shift downward, it moves upward to pass through
Trays 7-14 after 200 minutes. The temporary shift downward is
due to “wash-out” with the feed liquid and decreases in duration
with smaller hold-up, Figure 8. Initially, the mole fractions of
ethanol and water increase on the feed tray and this disturbance
is transmitted to the lower trays; viz., wash-out. The separation
becomes less effective as the alcohol concentration in the bottoms
decreases slightly, first replaced by benzene. In time, the alcohol
concentration decreases further with a build-up of water. Such an
“inverse response” was unexpected, but is explained by the
wash-out action. Upon closer examination, a similar effect is ob-
served in the dynamic studies of Peiser and Grover (1962).

Next, we decreased the feed flow rate and observed the opposite
effects, as illustrated in Figure 9 for a 10% decrease.

Similarly, we varied the composition of the binary feed stream.
As expected, since additional water increases the water/entrainer
ratio entering the tower, after a small shift downward due to
wash-out, the fronts are displaced upward. The opposite effects
were also observed.

Then, we varied the decanter bypass fraction. Additional bypass
increases the water/entrainer ratio entering the tower. As above,
after a small shift downward due to wash-out with the liquid reflux,
the fronts are displaced upward, and the opposite effects are ob-
served.

Finally, we varied the reboiler heat duty. For a given water/
entrainer ratio entering the tower, additional boil-up lowers the
ratio necessary for entrainer to penetrate into the stripping section.
Excess entrainer shifts the fronts downward, after a small shift
upward due to the step change in the boil-up. The opposite effects
were also observed.

Results for step changes in the feed composition, the decanter
bypass fraction, and the reboiler heat duty are not illustrated be-
cause they are qualitatively identical with those in Figures 7-9.

Control studies are beyond the scope of this work. However, to
demonstrate the controllability of the azeotropic tower, we ac-
companied a 30% increase in feed flow rate with adjustments in
the decanter bypass fraction and the reboiler heat duty to counter
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the shifts in the concentration and temperature fronts. The results
are shown in Figure 10. Curve 1 shows the initial concentration
profiles and Curve 2 shows the displacement, of approximately
three trays, two hours after a 30% increase in the feed flow rate.
For Curve 3, a 5% decrease in the decanter bypass fraction ac-
companied the increase in the feed flow rate, reducing the dis-
placement to approximately one tray. For Curve 4, a 5% increase
in the reboiler heat duty accompanied these changes, further re-
ducing the displacement to approximately one-half tray. Finally,
for Curve 5, an 8% decrease in r and a 10% increase in Q shift the
fronts downward by approximately one-half tray.

Next, we introduced a larger disturbance in the feed flow rate
to effect a shift in the regime of operation. The feed flow rate was
increased by 60% and the results are shown in Figure 11. Only 3.5
minutes after the disturbance, the concentration fronts shift ap-
proximately two trays downward. Then, they gradually shift up-
ward. After 17 hours the fronts are located between Trays 16 and
20 and the profiles resemble the second steady-state of Magnussen
and coworkers (1979) (with appreciable water throughout and
entrainer on the upper trays of the stripping section), which they
report to be unstable. These results support this observation as the
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Figure 12. Dehydration of isopropanol with cyclohexane. Conditions typical
of Union Carbide tower (Baldwin, 1979).

profiles drift through this regime and reach the third regime
(Prokopakis and Seider, 1983) (with appreciable water, but no
entrainer throughout the stripping section) after 23 hours.

Calculations for ethanol dehydration were performed using the
Distefano algorithm with the ASIRK integrator (Figure 5a). A
FORTRAN program was implemented on the UNIVAC 1100/61H
computer and arithmetic operations were in single precision.
Fifty-nine steps and 65 CPU seconds were required for 300 minutes
of operation time after the feed was increased by 30%. The ei-
genvalues at t = 0 were calculated and | | max was found to be 32;
that is, the explicit Euler’s method would require around 5,000 steps
(assuming that | | max does not increase) for the integration from
t = 0to ¢t = 300 min and an estimated 2,100 CPU seconds of the
UNIVAC 1100 computer. This justifies the use of the stiff inte-
grator. 280 CPU seconds were required to integrate the system
from ¢t = O to ¢t = 23 h after the feed rate was increased by 60%. In
the latter case, large time steps were taken as the system drifted
slowly from one regime of operation to another.

The relative error tolerance for the ASIRK integrator was 0.1
and much smaller errors were obtained because error estimates of
the imbedded pair in the ASIRK integrator are high. Several in-
tegrations were performed with a relative error tolerance of 0.01
for an hour of simulation time. The results agreed to four significant
figures, except for mole fractions less than 10—, where two figures
were in agreement.

Dehydration of Isopropanol with Cyclohexane

Figure 12 shows a schematic of a 38-tray tower for dehydration
of isopropanol with cyclohexane. The operating conditions are
typical of a Union Carbide tower as provided by ]J. Baldwin in
1979.

In this section, we present the results of studies in which the re-
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flux was held fixed and the decanter disregarded. Furthermore,
the reboiler hold-up was that of a typical tray and, hence, the de-
gree of stiffness was reduced.

Initially, all trays were loaded with the feed mixture. The boil-up
ratio was set to 5 and the concentration profiles in Figure 13a ap-
proached. However, the profiles drifted through this regime until
the regime in Figure 13c was reached. Prokopakis and coworkers
(1981a) computed a steady state similar to that in Figure 13a and
these results imply that this steady state is unstable.

To obtain the profiles in Figure 13b, the conditions of Figure 13a
were the initial conditions. The boil-up ratio was decreased to 3 and
100 mol of entrainer was added to the reboiler.

The Ballard and Brosilow algorithm with the ASIRK integrator
(Figure 5b) was used to integrate (C + 1)N = (5 + 1)38 = 228
ODE’s. Using the classifications for multicomponent systems, for
most time steps, only (2 + 1)38 + 3 X 6 = 132 ODE’s were inte-
grated. Note that isopropylether and acetone, and cyclohexane or
water, do not concentrate in the stripping section. Yet, they have
a moderate rate of change in the rectifying section. Hence, their
ODE'’s in the rectifying section are integrated, but not those in the
stripping section. Greater savings can be expected for systems with
more chemical species.

Comparison with Other Algorithms

Unfortunately, the BATCHFRAC program by Boston and co-
workers (1981) was unavailable and we have not implemented this
algorithm. Hence, we are unable to compare its efficiency and
reliability with our algorithms.

Tests of the Ballard and Brosilow integrator and the ASIRK in-
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tegrator for two and three ODE’s, show the latter to be more effi-
cient (Prokopakis and Seider, 1981b). Hence, we expect similar
results when using these integrators in the algorithm of Figure 5b.
However, these expectations have not been confirmed.

More information is required to determine whether the algo-
rithms of Gallun and Holland (1980) and Sourisseau and Doherty
(1980) are worthy of comparative testing,

APPENDIX A

Normally, the vapor overhead stream from the stripping tower
in Figure 6a is small compared with the reflux stream to the
azeotropic tower. Hence, to study the dynamic response of azeo-
tropic towers, the stripping tower can be neglected with small errors
(Figure 6b). However, our nonlinear programming algorithm to
locate steady-state operating conditions (Prokopakis and Seider,
1983) was demonstrated for the configuration in Figure 6a. This
Appendix gives the alterations when the stripping tower is elimi-
nated.

Consider the material balances at M in Figure 6c¢:

fi=any1Lngy — L ~ rxfLe
~bjeaFm =0 =123 (A1)

where 0 is the Kronecker delta function. The nonlinear pro-
gramming problem can be recast as:

3
minimize ¢ = Y f} P1
VlsRﬂCvxl,enbxl,Wﬂ =1
subject to:
vi<y,

R:ﬁc <Ry = Rﬂc
0= xl,ent < xi{em
0 < %1 wat < % at
yg,alc < YN ale = yll\ll,a]c
0<r=<1
0<F,
fi=o

The bounds on yy . are sufficient to locate the vapor overhead
composition in the feasible window since yy en; falls within the
narrow band surrounding the ternary azeotrope without inequality
constraints. The equality constraints are redundant, but we have
found that they significantly increase the rate of convergence with
Powell’s algorithm (1977).

For each set of design variable values we solve the MESH
equations, tray-by-tray, beginning at the bottom of the tower,
giving Vy, yn, Ly 41, and xn 4 1. The vapor overhead stream is
adjusted to the temperature of the decanter and split into two liquid
phases at equilibrium, giving L¢’, x¢, L4, and x%. Then, Egs. Al
are solved for r and F,,,, which is accomplished by solution of:

i=1238

3
minimize ¢ = ) f? P2
rFp =1

The stationarity conditions are d¢/dr = d¢/dF,, = 0 and, with
analytical differentiation, these give

3
Zl: (41 LNy1 — %L )xf

j=
T = js€ent
; (A2)
2 G
Jj#=ent
Fm =xNy1entlne: — xéal® — rxl L (A8)
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Reformulation of P1

To have all variables near unity, scaled variables are intro-

duced:

_ U
Xl,ent = xl,ent/xl,ent

X1,wat = X1, wat/% Vgt (A4)
Vy=V,/v{
and P1 is restated:
minimize ¢= % 3 P3
V1, RaloX 1 000X 1, wat §=lem
subject to:
h=v,-120
ke = (Raic = Riic)B e — Rale) 2 0

hg = X1ent(X Vent = X1,ent) Z 0
ha = X1 watlX Vyar = X1,wat) 2 0
hs = (YN ale = YR alc)(UR ale ~ YN ale) = 0
he=r(1-120
hy=F, =20
g&=f=0 =123
Powell’s algorithm (1977) is used to solve PS.

j # ent

APPENDIX B

For the ethanol-benzene-water system, vapor pressures were
estimated with the Antoine equation using the parameters of
Gmehling and Onken (1977), liquid phase activity coefficients with
the UNIQUAC equation using the parameters of Prausnitz and
coworkers (1980), and heat capacities with a fourth degree poly-
nomial in T using the parameters of Reid and coworkers (1977).
These parameters are given by Prokopakis and Seider (1983) in
Table 1.

Data for the system, isopropanol-cyclohexane-water-isopropyl-
ether-acetone, were provided by J. Baldwin (1979) and are given
by Prokopakis and coworkers (1981a). Vapor pressures were esti-
mated with the extended Antoine equation, liquid-phase activity
coefficients with the NRTL equation, and heat capacities with a
fourth-degree polynomial in T.
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NOTATION
ab = parameters in semi-implicit Runge-Kutta
method
A,B = parameters in Boston and Sullivan algorithm
(Figure 4a)
Ay = active cross-sectional area of Tray i, m2
B,C,D.E = bidiagonal coef. matrices
C~ = number of chemical species
dy du.de = vectors
P = function; dy/dt in Eqn. 16
h =dhl/dt, Eq. 13
M =dM,/dt, Eq. 2
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= flow rate of feed to Tray i, mol/s

acceleration due to gravity, m/s?

= tridiagonal coefficient matrix for species §

= volume of decanter hold-up, m?

= step size; enthalpy, J/mol; inequality residuals (P3,
Appendix A)

= height of weir on Tray i, m

= identity matrix

= Jacobian matrix

= increment functions in semi-implicit Runge-Kutta
method

= liquid-liquid distribution coefficient for species
j in decanter

= vapor-liquid distribution coefficient for species j
on Tray i

= liquid flow rate from Tray 4, mol/s

= length of weir on Tray i, m

= number of ODE’s

= liquid holdup on Tray i, mol

Diagonal hold-up matrix, (OM;/0L;)

= number of trays

pressure on Tray i, bar

= number of columns in Nordsieck array

= heat transfer to Tray i, J/s

= order of accuracy of the GEAR backward differ-
ence formula; recycle bypass fraction

= reflux ratio, /(1 ~ 1)

ale = fraction of alcohol recovered in the azeotropic
tower

= boil-up ratio, V, /L,

= fraction of stream in sidedraw from Tray{

= time, s

= temperature of Tray i, K

= matrix of volatility parameters in Boston and
Sullivan algorithm (Figure 4a)

i = flow rate of vapor stream from Tray i, mol/s

= dimensionless boil-up rate (Eq. A4)

weighting factors in semi-implicit Runge-Kutta

methods

1 = mole fraction of species j in liquid on Tray i

X = see Eq. A4

y = dependent variable

mole fraction of species j in vapor on Tray i

mole fraction of species § in feed stream to Tray

= 0iae o
L]
[}

i
X3 EP*? :?Q ~§ e ~(§m

~

@ 09 Nz

e

lie

ol

o
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o

i
Nordsieck array (m X q)

1IN
Il

Greek Symbols

parameters in GEAR backward difference for-

mulas

B8 = fraction of entrainer phase leaving decanter

Ve = characteristic root of Egs. 26-28 as h|\] - «

v; = liquid-phase activity coefficient for species j

Ay, = liquid height over weir on Tray i, m

0.« .= bounds in inequalities, Eqgs. 33-35

A = Eigenvalue

A = pseudo-eigenvalue for stiff variable (defined by
Eq. 29)

= density of liquid on Tray i, kg/m3

¢ = see P1 (Appendix A)

alns—l

Subscripts

0 = initial value att = 0

i = tray number, reboiler = Tray 1
i = species counter

L =C+1

m = entrainer make-up stream

max = maximum

n step counter

s stiff variable
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Superscripts

= aqueous phase leaving decanter
= condenser

= decanter

= entrainer phase leaving decanter
= feed

= liquid; lower bound

stripping tower

upper bound

= vapor

= pseudo

= steady state

= refers to configuration in Figure 6¢

e e NS At 8

>

LITERATURE CITED

Baldwin, J., Private Communication (1979).

Ballard, D. M., and C. B. Brosilow, “Dynamic Simulation of Multicom-
ponent Distillation Columns,” Annual Meeting of AIChE, Miami (Nov.,
1978).

Boston, J. F., H. L. Britt, S. Jirapongphan, and V. B. Shah, “An Advanced
System for the Simulation of Batch Distillation Operations,” Foundations
of Computer-Aided Chemical Process Design, Eds., R. S. H. Mah and
W. D. Seider, AIChE (1981).

Boston, J. F., and S. L. Sullivan, Jr., A New Class of Solution Methods for
Multicomponent, Multistage, Separation Processes,” Can. J. of Chem.
Eng., 52,1 (1974).

Bui, T. D., “Solving Stiff Differential Equations in the Simulation of
Physical Systems,” Simulation, 37 (Aug., 1981).

Distefano, G. P., “Mathematical Modeling and Numerical Integration of
Multicomponent Batch Distillation Equations,” AICKE ., 14, 190
(1968a).

Distefano, G. P., “Stability of Numerical Integration Techniques,” AIChE
J.., 14, 946 (1968b).

Gallun, S. E,, and C. D. Holland, “Extractive Distillation Column Described
at Unsteady State Using Gear’s Procedure,” Annual Meeting of AIChE,
Chicago (Nov., 1980).

Gmehling, J., and U. Onken, Vapor-Liquid Equilibrium Data Collection,
DECHEMA, Chemistry Data Series, I, Part 1, Verlag & Druckerei
Friedrick Bischoff, Frankfurt (1977).

Hindmarsh, A. C., “GEAR: Ordinary Differential Equation System Solver,”
Lawrence Livermore Laboratory Report UCID-30001, Rev. 3 (1974).

Howard, G. M., “Unsteady-State Behaviour of Multicomponent Distillation
Columns,” AIChE ]., 16,1022 (1970).

Huckaba, C. E,, F. P. May, and F. R. Franke, “An Analysis of Transient
Conditions in Continuous Distillation Operations,” Chem. Eng. Prog.
Symp. Ser., No. 46, 59, 38 (1963).

Huckaba, C. E,, F. R. Franke, F. P. May, B. T. Fairchild, and G. P. Diste-
fano, “Experimental Confirmation of a Predictive Model for Dynamic
Distillation,” Chem. Eng. Prog. Symp. Ser., No. 55, 61, 126 (1965).

Kim, C, and J. C. Friedly, “Approximate Dynamic Modelling of Large
Staged Systems,” IEC Proc. Des. Dev., 13, 177 (1974).

Luyben, W. L., V. §. Verneuil, Jr.,, and J. A. Gerster, “Experimental
Transient Response of a Pilot-Plant Distillation Column. Part I1V: Re-
sponse of a Ten-Tray Column,” AICKE ]., 10, 357 (1964).

Magnussen, T., M. L. Michelsen, and A. Fredenslund, *“Azeotropic Distil-
lation Using UNIFAC,” Inst. Chem. Eng. Symp. Ser., No. 56, Third Int’].
Symp. on Distillation, ICE, Rugby, Warwickshire, England (1979).

Mah, R. S, S. Michaelson, and R. W. H. Sargent, “Dynamic Behaviour of
Multicomponent Multistage Systems,” Chem. Eng. Sci., 17, 619
(1962).

Peiser, A. M., and S. S. Grover, “Dynamic Simulation of a Distillation
Tower,” Chem. Eng. Prog., 58, 65 (1962).

Powell, M. J. D., “‘A Fast Algorithm for Nonlinearly Constrained Optimi-
zation Calculations,” Dundee Conf. on Numerical Analysis (1977).

Prausnitz, J. M., T. F. Anderson, E. A. Grens, C. A. Eckert, R. Hsieh, and
J. P. O'Connell, Computer Calculations for Multicomponent Vapor-
Liquid and Liquid-Liquid Equilibria, Prentice-Hall (1980).

Prokopakis, G. J., B. A. Ross, and W. D. Seider, “Azeotropic Distillation
Towers with Two Liquid Phases,” Foundations of Computer-aided
Chemical Process Design, Eds., R. S. H. Mah and W. D. Seider, AIChE
(1981a).

Prokopakis, G. J., and W. D. Seider, “Adaptive Semi-Implicit Runge-Kutta
Algorithm for the Solution of Stiff Ordinary Differential Equations,”
IEC Fund., 20, 255 (1981b).

Prokopakis, G. J., and W. D. Seider, “Feasible Specifications in Azeotropic

AIChE Journal (Vol. 29, No. 6)



Distillation,” AICRE ]., 29, No. 1, 49 (1983).

Reid, R. C., ]. M. Prausnitz, and T. K. Sherwood, Properties of Gases and
Liquids, 3rd Ed., McGraw-Hill (1977).

Rosenbrock, H. H., “Some General Implicit Processes for the Numerical
Solution of Differential Equations,” Comp. J., 5, 329 (1963).

Seider, W. D., C. W. White, III, and G. ]. Prokopakis, “Stiff Ordinary
Differential Equations in Chemical Process Analysis,” Proceedings of
the AIChE-CIESC Meeting in Beijing, China (1982).

Sourisseau, K. D., and M. F. Doherty, “Dynamic Simulation of Stiff Dis-
tillation Systems,” J.A.C.C., San Francisco (1980).

Tyreus, B. D., W. L. Luyben, and W. E. Schiesser, “Stiffness in Distillation
Medels and the Use of an Implicit Integration Method to Reduce Com-
putation Times,” I&EC Proc. Des. Dev., 14, 427 (1975).

Waggoner, R. C., and C. D. Holland, “Solution of Problems Involving
Conventional and Complex Distillation Columns at Unsteady-State
Operation,” AIChE J., 11,112 (1965).

Manuscript received March 3, 1982; revision received December 15, and accepted
January 6, 1983.

Sedimentation of Multisized Particles in
Concentrated Suspensions

A model is developed for predicting the sedimentation velocity in suspensions

M. S. SELIM

of multisized nonflocculating solids, in which the retarding effect of the smaller

particles on the setting velocities of the larger ones is taken into account. Tests of
the model, and comparisons with other models, demonstrate that it provides im-
proved prediction of data on suspensions comprising both discrete particle size
mixtures and continuous size distributions, and that it is applicable to continuous

countercurrent solid-liquid operations.
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SCOPE

Sedimentation in concentrated suspensions of particles is a
broad subject because of the wide range of particle sizes, the
variety of particle shapes, and the complex nature of the hy-
drodynamic and physicochemical phenomena which govern
particle-fluid and particle-particle behavior. The present work
is limited to investigation of settling in concentrated noncollo-
idal suspensions of spherical particles of mixed sizes. Therefore,
the important class of flocculant suspensions, usually comprised
of particles in the submicron-size range, is excluded. Even with
this circumscription the problem is substantial.

Sedimentation in noncolloidal suspensions comprised of
spheres of uniform size and density has been investigated ex-
tensively. Theoretical results relating the settling velocity to
solids volume fraction for such monodisperse suspensions of
spheres have been treated in the dilute limit (Smoluchowski,
1912; Burgers, 1941, 1942; Uchida, 1949; McNown and Lin, 1952;
Happel, 1958; Kawaguti, 1958; Hasimoto, 1959; Pyun and Fix-
man, 1964; and Batchelor, 1972). The intermediate and the
high-concentration limits are more important in practice, but

less amenable to rigorous theoretical treatment; they have been
investigated rather extensively experimentally, Reliable em-
pirical methods for determining the settling velocity-volume
fraction (or voidage) relationship for concentrated suspensions
of rigid spheres of uniform size and density are available
(Garside and Al-Dibouni, 1977).

The subject of sedimentation involving suspensions con-
taining mixed particle sizes is not as well developed, and reliable
relationships have not been available. This paper is concerned
with development of methods for predicting the settling veloc-
ity-voidage relationship in suspensions consisting of discrete
as well as continuous mixtures of particle sizes. The method is
based on knowledge of the sedimentation behavior of the in-
dividual size fractions within the mixture each settling alone
in the suspending liquid. Interaction effects among particles
of different sizes are accounted for by viewing the sedimenta-
tion of a given size fraction to take place in a matrix composed
of the suspending fluid and the more slowly settling particles
of smaller sizes.

CONCLUSIONS AND SIGNIFICANCE

Operations involving relative motion between a fluid and
suspended particles arise often and include sedimentation,
fluidization and co- or countercurrent solid-liquid operations.

Correspondence concerning this paper should be addressed to M. S. Selim.

AIChE Journal (Vol. 29, No. 6)

The hydroedynamics of slow vertically flowing liquid-particle
mixtures, involving noncolloidal particles of uniform size and
density, are understood in the dilute limit and can now be reli-
ably treated empirically in the intermediate and concentrated
limits, The presence of particles of mixed sizes enhances in-
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